

Economic Computation and Economic Cybernetics Studies and Research, Issue 4/2021; Vol. 55

51

Associate Professor Hongbo LI, PhD
School of Management, Shanghai University, China
E-mail: ishongboli@gmail.com, hongbo_li@shu.edu.cn
Ziyi HU, Master's degree
School of Management, Shanghai University, China
E-mail: 512608474@qq.com
Hanyu ZHU, Master student
School of Management, Shanghai University, China
E-mail: zhuhanyu1101@qq.com (Corresponding author)
Associate Professor Yinbin LIU, PhD (Corresponding author)
School of Management, Shanghai University, China
E-mail: yinbinliu@126.com

PREEMPTIVE RESOURCE LEVELING IN PROJECTS

Abstract: As a well-known NP-hard problem in project scheduling, the resource

leveling problem (RLP) has attracted many researchers’ attentions. In the RLP, a

typical assumption is that activities are non-preemptive during project execution,

which means that activities cannot be interrupted once they have been started.

However, preemption is not uncommon in project management practice and

existing studies already show that it is beneficial to consider preemption when

leveling resource usage. Therefore, we investigate the preemptive resource leveling

problem and design a genetic estimation of distribution algorithm (GEDA). To

analyze the performance of the GEDA, we conduct extensively computational

experiments on 2160 randomly generated instances. We also examine the impacts

of various factors on the GEDA. Comparative experimental results show that the

GEDA outperforms the existing meta-heuristic algorithm.

Keywords: Project scheduling; Resource leveling; Preemption; Meta-heuristic

algorithms.

JEL Classification: M11, C44, C61

1 Introduction
It is increasingly popular to manage work in the form of projects. 20% of the

global economic activities are organized by projects, which generate an annual

economic value of approximately 12 trillion dollars (Li & Hall 2019). In project

Administrator
Typewritten Text

Administrator
Typewritten Text

Administrator
Typewritten Text
DOI: 10.24818/18423264/55.4.21.04

Hongbo Li, Ziyi Hu, Hanyu Zhu, Yinbin Liu

52

management, allocating various types of resources effectively is a critical success

factor for projects. As a well-known NP-hard problem in project resource

scheduling, the resource leveling problem (RLP) has attracted many researchers’

attentions. In the RLP, a baseline schedule is formed by specifying start time for each

activity. This schedule levels the resource utilization while satisfying the precedence

relations constraints and the project deadline constraint. Leveled resource usage can

reduce unnecessary capital expenditures and avoid hasty deployment of temporary

resources (Doulabi et al. 2011; Li et al. 2018). The systematic reviews of the RLP

can be further referred to Demeulemeester & Herroelen (2002), Neumann et al.

(2003).

In the RLP literature, a typical assumption is that activities are non-preemptive

during project execution, which means that activities cannot be interrupted once they

have been started. However, preemption is not uncommon in project management

practice. Due to management needs or external conditions, the execution of certain

activities may be temporarily interrupted, e.g., stopping machines after work,

software developers switching between different tasks, etc. (Ballestín et al. 2009).

Preemption has been considered in many project scheduling problems, such as

multi-project scheduling (Bock & Patterson 1990), multi-objective project

scheduling (Nudtasomboon & Randhawa 1997), resource-constrained project

scheduling (Ballestín et al. 2008; Demeulemeester & Herroelen 1996), etc.

In the RLP, taking preemption into consideration can lead to more levelled

resource utilization (Doulabi et al. 2011; Liu et al. 2019). Therefore, more

attentions are being paid to the preemptive resource leveling problem (PRLP) and

several exact and meta-heuristic algorithms have been proposed. In terms of exact

algorithms, Son & Mattila (2004) develop a linear programming model based on

binary variables for the PRLP. Hariga & El-Sayegh (2011) study a mixed integer

programming model to minimize the cost caused by resource fluctuations and

activity preemption. Nadjafi et al. (2013) proposes a branch-and-bound procedure

to solve the PRLP.

The research on the meta-heuristic algorithms for the PRLP is scarce. Razavi

& Mozayani (2007) propose a genetic algorithm and they only allow noncritical

activities to be interrupted. Alsayegh & Hariga (2012) design a hybrid

meta-heuristic for PRLP, in which the cost of splitting activities is taken into

consideration. Splitting critical activities is not allowed neither. Doulabi et al.

(2011) design a genetic algorithm for the PRLP, in which not all activities are

Preemptive Resource Leveling in Projects

53

allowed to be preempted. Their objective function consists of two terms:

minimizing the cost caused by resource utilization variations and that by activity

preemption. In their genetic algorithm, the proposed encoding scheme tends to

generate individuals violating the precedence relations constraints. So the authors

add a feasibility repair mechanism to the genetic algorithm. They validate the

genetic algorithm using 220 randomly generated instances and the data of a tunnel

construction project. Different from the above-mentioned studies, we allow any

activity to be interrupted at any integer time point. In this case, although the

searching space will be enlarged, it increases the possibility of finding a better

schedule that results in more leveled resource utilization.

Due to the RLP is NP-hard (Neumann et al. 2003), exact algorithms are only

suitable for small instances. They can even hardly obtain feasible solutions for

large-scale instances in a reasonable time. In this situation, heuristic algorithms

become the only option. In addition, the introduction of preemption further

increases the complexity of the RLP, which makes the RLP more difficult to be

solved. Specifically, at the end of each unit time period, decisions about which

activities should be scheduled need to be made, which significantly increases the

number of feasible solutions. While in the non-preemptive RLP, the timing for

scheduling decisions only corresponds to the completion of activities. Therefore,

efficient meta-heuristic algorithms need to be devised to handle the PRLP.

In this paper, we investigate the PRLP and develop a genetic estimation of

distribution algorithm (GEDA) that combines the genetic algorithm (GA) and the

estimation of distribution algorithm (EDA). Our main contributions are as follows:

(1) For the first time, a meta-heuristic, GEDA, is proposed for solving the

PRLP, in which each activity is allowed to be interrupted at any integer time point.

On the one hand, to the best of our knowledge, there has been no research on

meta-heuristics for this kind of PRLP. On the other hand, GAs and EDAs have

been successfully applied to various project scheduling problems (Li et al. 2018; Li

& Dong, 2018; Forghani & Fatemi-Ghomi, 2019). However, no studies that apply

the EDA to solve the PRLP are found.

(2) In the GEDA, a schedule is encoded into an individual consisting of an

activity list and a shift key vector. This encoding mechanism ensures that an

individual always corresponds to a feasible schedule. The activity list and the shift

key vector are updated by specially designed operators based on the EAD and the

GA, respectively.

Hongbo Li, Ziyi Hu, Hanyu Zhu, Yinbin Liu

54

(3) To analyze the effectiveness and efficiency of the GEDA, we conduct

extensively computational experiments on 2160 randomly generated instances. The

results show that, for small-scale instances with no more than 30 activities whose

optimal solutions are known, in most cases, the difference between the solutions

obtained by the GEDA and the optimal solutions is within 5%, and the average

calculation time of each instance is less than 0.6 seconds. For small-scale instances

whose optimal solutions are not known and large-scale instances with 100

activities, the GEDA obtains better solutions than CPLEX on more than half of the

instances, while requiring only about 1/1000 of the calculation time of CPLEX.

The rest of the paper is organized as follows. Section 2 states the PRLP,

presents the corresponding optimization model, and gives an example for the PRLP.

Our GEDA is described in Section 3. We perform computational experiments to

analyze the performance of the GEDA in Section 4. The last section summarizes

the paper and prospects future research directions.

2. The preemptive resource leveling problem
2.1 Problem statement

The PRLP is described as follows. A project is represented by an

activity-on-node network ܩ = (ܰ, ܰ ,N is the set of nodes representing activities .(ܣ = {0,1,2… , ݊, ݊ + 1} . The activities are topologically numbered from 0 to ݊ + 1. Activities 0 and ݊ + 1 are dummy ones, indicating the start and the end of

the project. ܣ is the set of arcs indicating the precedence relations among

activities. If (݅, ݆) ∈ activity ݅ is the predecessor of activity ݆, which means ,ܣ

that activity ݆ cannot be started until activity ݅ is finished. This kind of

precedence relations is the same as that used in the critical path method

(Demeulemeester & Herroelen 2002). The project deadline is ݀̅.

The start time and duration of non-dummy activity ݅ are denoted as ݏ௜ and ݀௜, respectively. The duration of dummy activities is 0. Without loss of generality,

we assume that all time-related parameters are integer. There are ܭ types of

renewable resources. During the execution of non-dummy activity ݅ , its

requirement for resource type ݇ at each time period is ݎ௜௞ , ݇ = 1,2, … , ܭ .

Dummy activities do not need any resources.

In project management practice, it is not uncommon to interrupt some

activities such that resources can be re-allocated to other more critical activities.

The interrupted activity is resumed after the resources become sufficient again.

Therefore, without loss of generality, we assume that each activity is allowed to be

Preemptive Resource Leveling in Projects

55

interrupted at any integer time point during execution. For activity ݅, let ݌௜ denote

its number of preemption, ݌௜ ∈ [0, ௜ܲ], where ௜ܲ is its maximum number of

preemption (௜ܲ = ݀௜ − 1). If ݌ = 0 , then activity ݅ is executed without

preemption; If ݌ = ௜ܲ, then activity ݅ is interrupted after each time unit.

If activity ݅ is interrupted ݌௜ times, then activity ݅ can be viewed as ݌௜ + 1
sub-activities and these sub-activities form a set ܫ௜ = {݅ଵ, ݅ଶ, … , ݅௣೔ାଵ}. For each

sub-activity ݅௤ ∈ ݍ) ௜ܫ = 1,2, … , ௜݌ + 1), its start time and duration are denoted as ݏ௜௤ and ݀௜௤, respectively.

The PRLP aims at minimizing the variations in resource utilization by

constructing a baseline schedule ܵ that decides the start time and duration of each

sub-activity under a preemption environment, while meeting the precedence

relation constraints and the project deadline constraint.

2.2 Optimization model
Treating each activity ݅ as ݀௜ successive sub-activities, each of which has a

duration of 1, we present the optimization model for the PRLP as follows:

Minimize ∑ ∑ (ܿ௞ ∙ ௞௧ଶݑ)ௗത௧ୀଵ௄௞ୀଵ (1)

Subject to: ݏ଴,ଵ = 0 (2)

௡ାଵ,ଵݏ ≤ ݀̅ (3)

௜,ௗ೔ݏ + 1 ≤ ,݅)∀ ௝,ଵݏ ݆) ∈ (4) ܣ

௜,௤ݏ + 1 ≤ ݅∀ ௜,௤ାଵݏ ∈ ܰ; ݍ = 1,2, … , ݀௜ − 1 (5)

 ∑ ௜௞௜∈௏೟ݎ = ݇ ௞௧ݑ = 1,2,… , ;ܭ ݐ = 1,2, … , ݀̅; (6)

௜,௤ݏ ≥ 0 ∀݅ ∈ ܰ; ݍ = 1,2, … , ݀௜ (7)

The objective function (1) minimizes the weighted sum of the square of

resource usage (Demeulemeester & Herroelen 2002), where ݑ௞௧ is the usage of

resource type ݇ at each time period ݐ and ܿ௞ is the weight of resource type k. The

constraint (2) ensures that the project begins at time zero. The constraint (3)

promises that the project is completed no later than the deadline. The constraints (4)

represent the precedence relations, which means that the successor activities cannot

be started until the last sub-activities of its predecessor have been finished. The

constraints (5) indicate that the sub-activities of each activity should be executed

sequentially. The constraints (6) are used to calculate ݑ௞௧, in which ௧ܸ is the set of

sub-activities that are executing during time period ݐ. The constraints (7) let the start

time of each sub-activity be non-negative.

Obviously, the object function (1) is non-linear due to the existence of ݑ௞௧ଶ . In

addition, the set ௧ܸ in constraints (6) also make the constraints non-linear. Therefore,

Hongbo Li, Ziyi Hu, Hanyu Zhu, Yinbin Liu

56

the above model is non-linear. However, based on the linearization method proposed

in Rieck et al. (2012) and Liu et al. (2019), this non-linear model can be

transformed into a linear integer programming model.

The PRLP can be reduced to the RLP by allowing each activity to be

interrupted zero times. This means that the PRLP is a generalization of the NP-hard

RLP (Neumann et al., 2003). Therefore, the PRLP is also NP-hard. In this case,

exact algorithms can hardly find a satisfactory solution in a reasonable time for the

large-scale PRLPs. We will design a meta-heuristic algorithm in Section 3 to

efficiently obtain satisfactory solutions for the PRLP.

2.3 Example
We use an example to illustrate the PRLP and show that it is possible to obtain a

more leveled schedule after considering preemption. Figure 1 displays a project network

with 4 non-dummy activities. The rectangles and the arrows represent activities and

precedence relations, respectively. There is one resource type. The number above (below)

each rectangle is the duration (resource requirement) of the corresponding activity. The

project deadline is 4. The weight of the resource ܿଵ = 1.
 di

1

2 3 1

0
1

0

2 3 4

5

i

0

0

2 1 2

0

3

 ri

Legend:

Figure 1. Example project network

When the preemption is not allowed, Figure 2 shows the resulting optimal

schedule ܵ = (0,0,0,2,3,4) with the value of the objective function being ∑ ∑ ൫ܿ௞ ∙ ௞௧ଶݑ ൯ସ௧ୀଵଵ௞ୀଵ = 3ଶ + 3ଶ + 4ଶ + 2ଶ = 38.

If we allow the preemption, we can obtain the optimal schedule ܵᇱ =[0, (0,3),0,2,3,4] as shown in Figure 3. In ܵᇱ, activity 1 is interrupted once. The

first sub-activity (1a) of activity 1 starts at time 0 with a duration of 2 and the

second one (1b) starts at time 3 with a duration of 1. The corresponding objective

value of ܵᇱ is ∑ ∑ ൫ܿ௞ ∙ ௞௧ଶݑ ൯ସ௧ୀଵଵ௞ୀଵ = 3ଶ + 3ଶ + 3ଶ + 3ଶ = 36. It can be seen

that a more leveled schedule is constructed after allowing the preemption.

Preemptive Resource Leveling in Projects

57

1

2

3

4

1 2 3 4 5

1

2

3

4

Time

Resource usage

0

Figure 2. The optimal schedule without

preemption

1a

2

3

4

1

2

3

4

Resource usage

1b

1 2 3 4 5 Time0
Figure 3. The optimal schedule with preemption

3. Genetic estimation of distribution algorithm

The EDA is a prospering meta-heuristic for solving optimization problems.

There are some similarities between the EDA and the GA, e.g., they are

population-based algorithms and the population is updated at each iteration. The

EDA is based on statistical learning theory. The core of the EDA is probability

models that describe the distribution of potential solutions in the searching space.

The EDA updates its populations by sampling according to the probability models.

In our GEDA, there are POP individuals in the population. Each individual

consists of two elements: an activity list ܮܣ and a shift key vector ܵܭ (Section 3.2).

New individuals are generated by applying the EDA and the GA operators to the

activity list and the shift key vector, respectively (Sections 3.3 and 3.4).

 Initialize the probability model PM

Sampling from the PM to generate
activity lists based on the PGM

Update PM

Decoding the individuals into
schedules

Choose the best POP‘ individuals

Apply crossover and mutation
operators to SK

Is the stop condition met?

Start

Yes

No

End

 Initialize the shift key vector SK

Figure 4. The framework of the GEDA

The framework of the GEDA is described as follows (Figure 4). First, the

probability model ܲܯ and the shift key vector ܵܭ are initialized. ܲܯ is used to

Hongbo Li, Ziyi Hu, Hanyu Zhu, Yinbin Liu

58

generate activity lists. Then, based on the probability generating mechanism, POP

activity lists are obtained by sampling the probability model ܲܯ . Next, the

individuals are decoded into schedules (Section 3.2) and the corresponding

objective function values are calculated. After that, ܲܯ is updated based on the

top POP’ individuals in terms of the objective function value. In the meanwhile,

crossover and mutation operators are adopted to update the shift key vectors. The

above process keeps iterating and the schedules are improved until a pre-determined

termination condition is satisfied.

3.1 Unit time project network
To simplify the schedule encoding mechanism, we introduce the unit time

project network.
Definition: Unit time project network ܩ′ = (ܰᇱ, ݅ ᇱ). For each activityܣ ∈ ܰ,

splitting it into ݀௜ sub-activities, each of which has a duration of 1. Let ܰᇱ
denote the set of the resulting sub-activities. For any two adjacent sub-activities,
adding a precedence relation between them. The newly added and original
precedence relations form the set ܣᇱ. In this way, ܰᇱ and ܣᇱ form the unit time
project network ܩ′.

The set ܰᇱ contains ܾ݊ݑݏ = ∑ ݀௜௡௜ୀଵ non-dummy sub-activities. We
re-number these sub-activities according to the following rule: For sub-activity ݅௤

ݍ) = 1,2, … , ݀௜), its number in ܰᇱ is ݉ = ∑ ௝݀௜ିଵ௝ୀଵ + The dummy end activity .ݍ
in ܰᇱ is numbered ܾ݊ݑݏ + 1. Figure 5 illustrate this rule using the example
project shown in Figure 1.

1Activity number in N:

Sub-activity number in N':

42 3

1 72 3 4 5 6

Figure 5. Numbering the sub-activities

After introducing the unit time project network, we do not need to specifically

consider the interruption in the PRLP. Because for any two adjacent sub-activities ݅௤ଵ and ݅௤ଶ belonging to the same activity, if the finish time of ݅௤ଵ equals the

start time of ݅௤ଶ, then it means that there is no interruption between ݅௤ଵ and ݅௤ଶ;

otherwise, there exists interruption. In the following, our GEDA acts on the unit

time project network ܩ′ to obtain the schedule for the RPLP.

3.2 Encoding and decoding
Properly encoding and effectively evaluating a schedule is the key to design

effective meta-heuristic algorithms for solving the PRLP. In project scheduling

Preemptive Resource Leveling in Projects

59

research, the meta-heuristic algorithms usually operate on some kind of encoding of

the schedule. The schedule generation mechanism is used to decode the encoded

schedule.

In the GEDA, an individual corresponds to a schedule. The individual is

represented by a tuple (ܮܣ, ܭܵ and the shift key vector ܮܣ of the activity list (ܭܵ . The activity list ܮܣ = ,ଵߨ) ,ଶߨ … , ,௜ߨ … , (௦௨௕௡ߨ is a permutation of the

sub-activities, where ߨ௜ is the sub-activity number that appears on the ith position.

The number of elements in ܮܣ equals that of sub-activities ܾ݊ݑݏ. It should be

noted that the order of the sub-activities in ܮܣ does not need to obey the

precedence relations constraints, because we will deal with these constraints in the

decoding procedure. There are also ܾ݊ݑݏ elements in the shift key vector ܵܭ = ,ଵ݇ݏ) … ,௜݇ݏ … , ௜݇ݏ ,(௦௨௕௡݇ݏ ∈ ௜ indicates the degree to which the݇ݏ .[0,1]

start time of sub-activity ݅ deviates from its earliest start time. In other words, the

earliest and latest start times of sub-activity ݅ form a time window, and ݇ݏ௜ is the

ratio of the difference between the start time of the sub-activity ݅ and its earliest

start time to the time window. In the initial population, ܮܣ is sampled from the

initial probability model (Section 3.3.1), and ܵܭ is generated randomly.

In the GEDA, the resource levelling schedule generation scheme (RLSGS) (Li

et al. 2018; Li & Dong 2018) is used to decode individuals into schedules. The

main process of the RLSGS is as follows. For an individual (ܮܣ, the first ,(ܭܵ

unscheduled sub-activity ݅ indicated by ܮܣ is selected and its start time is set as ݏ௜ = ௜ݏ݁ + ௜݇ݏہ × ௜ݏ݈) − is the earliest (latest) start time of（௜ݏ݈）௜ݏ݁ where ,ۂ(௜ݏ݁

sub-activity ݅ after considering the scheduled activities. Then the earliest and

latest start times of unscheduled sub-activities are updated. It can be seen that the

start time assigned to each sub-activity in the above manner is always within a

feasible time window, so that the precedence relationships between the

sub-activities are satisfied. The above process is repeated until all sub-activities

have been assigned a start time. In this way, the schedule is obtained. Given a

schedule, we calculate its objective function value according to Equation (1),

which is then used to evaluate each individual.

3.3 Operators on the activity list
In each iteration of the GEDA, the activity list ܮܣ is the updated using the

probability models.

3.3.1 Probability-generating mechanism
In the probability-generating mechanism (PGM), the probability model

Hongbo Li, Ziyi Hu, Hanyu Zhu, Yinbin Liu

60

ܯܲ = ,ଵߙ) ,ଶߙ … , ,௜ߙ … , ௜ that sub-activity ݅ isߙ ௦௨௕௡) predicts the probabilityߙ

chosen when constructing the sub-activity list ܮܣ. The basic idea of the PGM is as

follows. The numbers in the interval 	(0, ∑ ௜௦௨௕௡௜ୀଵߙ) correspond to different
sub-activities. The sub-activity list can be obtained by sampling from this interval

according to the probability (ߙଵ, ,ଶߙ … , ,௜ߙ … , .ܯܲ ௦௨௕௡) of each sub-activity inߙ

Details on the PGM is shown in Algorithm 1.

Algorithm 1. Using the PGS to generate the sub-activity list
Input: the probability model ܲܯ
Output: the sub-activity list ܮܣ ܮܣ = ∅; ܷ = ∑ ௜௦௨௕௡௜ୀଵߙ ;
For ݏ݋݌ = 1 to ߨ ܾ݊ݑݏ = ݎܲ ;1 = ;గߙ

Sample a random number ݎ from the interval (0, ܷ)
While ݎ > ߨ :ݎܲ = ߨ + ݎܲ ,1 = ݎܲ + ௣௢௦ߨ ;గߙ = ܷ ;ߨ = ܷ − గߙ ;గߙ = 0;

End for
Return ܮܣ = ,ଵߨ) ,ଶߨ … , (௦௨௕௡ߨ

In Algorithm 1, the initial sub-activity list ܮܣ is set to empty. The

sub-activity number π needs to be inserted into ܮܣ , and the order that the
sub-activities are selected is determined by the probability model ܲܯ ௣௢௦ߨ .
represents the sub-activity number in ܮܣ and ݏ݋݌ is the ݏ݋݌-th position in ܮܣ

ݏ݋݌) = 1,2, … , the corresponding ,ܮܣ Whenever a sub-activity is put into .(ܾ݊ݑݏ

element in ܲܯ is set to 0 (i.e. ߙ௜ = 0). In doing so, we ensure that each

sub-activity is only selected once, which means that after a sub-activity is selected,

it will not be selected again. Given a set ܰᇱതതത of sub-activities that have not been

added to the sub-activity list ܮܣ, the probability that the sub-activity ݅ ∈ ܰᇱതതത	is
selected into ܮܣ is ߙ௜/∑ ௝௝∈ேᇲതതതതߙ .

At the beginning of the GEDA, we initiate ܲܯ = ,ܾ݊ݑݏ/1) …,ܾ݊ݑݏ/1 such that each sub-activity is chosen with an equal probability. This means (ܾ݊ݑݏ/1,

that we sample uniformly from the solution space to form the initial sub-activity

list. In this way, the diversity of the initial solutions in the solution space is

guaranteed.

3.3.2 Probability model updating mechanism
At the end of each iteration, the probability model ܲܯ needs to be updated

such that ܲܯ can better estimate the distribution of the solutions. Specifically,

Preemptive Resource Leveling in Projects

61

POP′ best individuals are selected from the POP individuals generated using the

PGM in terms of the objective function value. Then the elements in ܲܯ are

updated based on the following formula: ߙ௜ᇱ = (1 − (ߚ ∙ ௜ߙ + ఉ௉ை௉ᇲ ∑ ߱௜௝௉ை௉ᇲ௝ୀଵ , 1 ≤ ݅ ≤ (8) ܾ݊ݑݏ

where ߙ௜ᇱ is the updated value of ߙ௜ , and ߚ is the learning speed. ௜߱௝ reflects the
importance of sub-activity i appearing in different positions of the sub-activity list.
When constructing a sub-activity list using the PGM, it is implied that the more
front the activity in the sub-activity list, the more important it is. Therefore, to

calculate ߱௜௝, we let the sub-activity that appears first in the sub-activity list has
the largest weight ܾ݊ݑݏ, the weight of the subsequent sub-activity decreases by 1,
and so on. So the weight of the last sub-activity in the sub-activity list is 1.

Consequently, ௜߱௝ = ௦௨௕௡ି௣௢௦ାଵ௦௨௕௡ା(௦௨௕௡ିଵ)ା⋯ାଵ = ௦௨௕௡ି௣௢௦ାଵ(௦௨௕௡ାଵ)௦௨௕௡/ଶ , where ݏ݋݌ is the

position of sub-activity ݅ in ܮܣ.
3.4 Operators on the shift key vector

The crossover and mutation operators from the GA are applied to the shift key

vector to update it.

3.4.1 Crossover
Two-point crossover is adopted in the GEDA. First, ܱܲܲ/2 individuals are

chosen as father individuals with probability ௖ܲ; and top ܱܲܲ/2 individuals in

terms of the objective function value are selected as mother individuals. Then, the

father and mother individuals are randomly matched into ܱܲܲ/2 pairs of

individuals. Next, two crossover points ݐଵ and ݐଶ	 (1 ≤ ଵݐ < ଶݐ ≤ ܾ݊ݑݏ) are

selected randomly. The father’s (mother’s) gene between ݐଵ and ݐଶ are copied to

son (daughter) individual. The remaining gene positions in the son (daughter)

individual are filled with the genes on the corresponding positions of the mother

(father) individual.

3.4.2 Mutation
The mutation operator used in the GEDA is one-point mutation. For each

child individual, each element in the shift key vector has a mutation probability of ௠ܲ. Specifically, for each element ݇ݏ௜ (݅ = 1,… , in the shift key vector, we (ܾ݊ݑݏ

generate a random number ݀݊ܽݎ ∈ (0,1). If ݀݊ܽݎ is smaller than the mutation

probability ௠ܲ, then we replace ݇ݏ௜ with a new random number between 0 and 1.

4. Computational experiments
Our GEDA is implemented in Matlab R2014a. Our computational

experiments are performed on a computer equipped with an Intel Core i5 2.5 GHz

Hongbo Li, Ziyi Hu, Hanyu Zhu, Yinbin Liu

62

CPU and Windows 10.

4.1 Experimental setup
Our computational experiments adopt two benchmark data sets: TA and TB. TA

is from Liu et al. (2019). Both sets are generated using the project scheduling

problem instance generator RanGen (Demeulemeester et al. 2003). Specifying

various control parameters in RanGen, project networks with different number of

activities, topological structures and resource types can be produced. The main

parameters of the data sets TA and TB are shown in Table 1. The order strength (OS)

is the ratio of the number of precedence relations in the project network to the

theoretical maximum number of precedence relations. The OS represents the

complexity of the project network structure. ܵܧ௡ାଵ	is the critical path length

computed by the critical path method.

Table 1. The main parameters of data sets TA and TB
Parameter Dataset TA Dataset TB|ܰ| 10, 20, 30 100
OS 0.3, 0.5, 0.7 0.3, 0.5, 0.7

K 4 4 ݀̅ 1.0 ∙ ௡ାଵ; 1.2ܵܧ ∙ ௡ାଵ 1.0ܵܧ ∙ ௡ାଵ; 1.2ܵܧ ∙ ௡ାଵܵܧ

Given the parameter values of TA in Table 1, 90 instances are generated for

each value combination and this results in 3 × 3 × 1 × 2 × 90 = 1620 instances

in TA. In terms of the number of activities contained in each instance, TA is a small

scale data set.

The main difference between TA and TB is the number of activities. TB is a

larger data set with 100 activities in each instance. Given the parameter values of

TB in Table 1, 90 instances are also generated for each value combination and this

results in 1 × 3 × 1 × 2 × 90 = 540 instances in TB.

For the GEDA parameters, after fine-tuning the parameters, we set the

population size POP = 200 , the number of individuals used to update the

probability model POPᇱ = 50 , the learning speed β = 0.5 , the crossover

probability ௖ܲ = 0.8 and the mutation probability ௠ܲ = 0.3 . The termination

condition of the GEDA is to generate up to 1000 schedules.

4.2. Performance measures
To evaluate the performance of our GEDA, we take the mixed-integer linear

programming algorithm in CPLEX as the baseline algorithm and compare it with

the GEDA. Specifically, we transform the model (1) - (7) into a mixed-integer

linear programming model according to Liu et al. (2019). Then the resulting model

Preemptive Resource Leveling in Projects

63

is solved using CPLEX. For CPLEX, the time limit for each instance is set to 600

seconds. This means that an optimal solution will be output if it can be found

within 600 seconds. Otherwise, the best feasible solution is output.

In our experiments, the following performance measures are employed:

(1) Average relative deviation (ARD): The average percentage deviations from

the objective values obtained in CPLEX. The ARD is calculated as follows:

 ARD = ∑ ቂቀೀ೔ಸಶವಲషೀ೔಴ುಽಶ೉ቁ/ೀ೔಴ುಽಶ೉ቃ೙೔సభ ೙ × 100% (9)

where ௜ܱீ ா஽஺ (௜ܱ஼௉௅ா௑) is the objective function value of the ith instance obtained

by the GEDA (CPLEX) and n is the number of instances in the test set. The value

of the ARD reflects the performance difference between the GEDA and CPLEX. A

smaller ARD value means that the GEDA can obtain better solutions.

(2) Computation time (CPU): Average computation times in seconds for

solving each instance.

4.3. Computational results
We examine the performance of the GEDA by comparing it with CPLEX.

Table 2 shows the computational results on the small-scale test set TA. It should be

noted that CPLEX only obtains the optimal solutions of 358 instances in TA. The

remaining instances have only feasible solutions so far (Liu et al., 2019).

Accordingly, the results in Table 2 are divided into two groups corresponding to the

columns labeled with “Instances with known optimal solutions” and “Instances

with feasible solutions only”, respectively. The cells filled with “-” mean that the

optimal solutions of the corresponding instances have not been found. A negative

value of the ARD indicates that our GEDA outperforms CPLEX in the

corresponding condition.

From Table 2, it can be seen that for instances with known optimal solutions,

the solutions obtained by the GEDA are close to the optimal ones. For instances

with feasible solutions, the GEDA obtains better solutions in more than half of the

cases (at this time, the ARD is negative); in the other cases, the results of the

GEDA are close to CPLEX (the ARD is less than 2%). In terms of the computation

time, the average CPU time of the GEDA is less than 0.6 seconds, which is much

faster than CPLEX. In summary, the results in Table 2 show that for the small-scale

PRLP instances, the GEDA is able to obtain satisfactory solutions in a short time.

Because the scale of the data set TB is larger, CPLEX has not found the

optimal solutions. The ARDs in Table 3 indicate the comparison results between

Hongbo Li, Ziyi Hu, Hanyu Zhu, Yinbin Liu

64

the solutions obtained by the GEDA and the best solutions of CPLEX. We can see

from Table 3 that the GEDA obtains better solutions when the project deadline is

loose. For the tight project deadline, the solutions of the GEDA are only slightly

worse than CPLEX, and the difference between objective values is within 2%. In

addition, the average CPU time of the GEDA is within 6 seconds, whose efficiency

is much higher than CPLEX. In short, when solving large-scale instances, the

effectiveness and efficiency of our GEDA are also satisfactory.

Table 2. Computational results on the data set TA ݀̅ |ܰ| ܱܵ
Instances with known

optimal solutions
Instances with feasible

solutions only
ARD CPU (s) ARD CPU (s)

1.0 ∙ ௡ାଵܵܧ

10
0.3 2.39% 0.128 -0.71% 0.132
0.5 4.47% 0.117 -2.37% 0.123
0.7 2.93% 0.122 -2.22% 0.123

20
0.3 2.08% 0.304 0.41% 0.317
0.5 3.04% 0.312 -0.29% 0.310
0.7 1.60% 0.298 -0.29% 0.313

30
0.3 0.55% 0.562 0.31% 0.592
0.5 1.01% 0.550 0.87% 0.590
0.7 1.01% 0.542 0.89% 0.587

1.2 ∙ ௡ାଵܵܧ

10
0.3 3.37% 0.125 0.23% 0.133
0.5 5.05% 0.119 -1.68% 0.124
0.7 5.97% 0.122 -1.98% 0.125

20
0.3 2.79% 0.303 0.08% 0.315
0.5 10.54% 0.293 -0.12% 0.312
0.7 4.63% 0.292 -0.03% 0.320

30
0.3 1.64% 0.584 -0.29% 0.597
0.5 3.81% 0.537 1.05% 0.593
0.7 - - 1.44% 0.593

Table 3. Computational results on the data set TB ݀̅ ܱܵ ARD CPU (s) 1.0 ∙ ௡ାଵܵܧ
0.3 0.64% 5.754
0.5 0.58% 5.711
0.7 1.94% 4.2421.2 ∙ ௡ାଵܵܧ
0.3 -3.11% 5.783
0.5 -8.54% 5.750
0.7 -11.48% 4.237

4.4. Sensitivity analysis

In this subsection, we examine the impact of the number of activities, the

project deadline and the OS on the performance of the GEDA (Figures 6-9). In

Figures 6-9, the lower the line, the better the results.

Figures 6-8 display the results on the small-scale test set TA. It can be seen

that there are no obvious patterns for the impact of the number of activities. When

Preemptive

other facto

30 activitie

When the

obvious; as

performanc

Figure 6. Im

and th

Figure

results on t

better the

dependent

OS is not

improves a

Figure 8. I

4.5. Comp

Prior

specific PR

GEDA wi

literature, t

Among the

e Resource L

rs are given

es. For the p

number of a

s this factor

ce when the O

mpact of the nu

he project dea

e 9 shows th

the small-sca

performance

on the proje

obvious; w

as the OS inc

mpact of the O

deadline (se

parison wit

to our GED

RLP studied i

th the exist

there are m

em, the HGA

Leveling in P

, the GEDA

project deadl

activities is

becomes lar

OS is the sm

umber of activ

dline (set TA)

he results on

ale test set, g

e of the GE

ect deadline:

when the dea

creases.

OS and the pro

et TA)

th existing

DA, no met

in this paper.

ting meta-h

meta-heuristic

A of Doulab

rojects

can get bett

line, a looser

small (|ܰ| =
rger (|ܰ| = 2

mallest.

vities Figu

n the large-s

given the OS,

EDA. The im

: When the d

adline is tig

oject Fig

meta-heuri

ta-heuristic

. Therefore,

heuristic alg

c algorithms

bi et al. (201

ter results fo

r deadline le= 10), the im20,30), the G

ure 7. Impact o

and th

cale test set

, the tighter t

mpact of the

deadline is l

ht, the perfo

gure 9. Impact

dead

istic algorit

algorithm h

it is difficult

orithm. How

for solving

11) is curren

or instances w

eads to bette

mpact of the

GEDA achiev

of the number

he OS (set TA)

t TB. Differe

the project d

e OS on the

loose, the im

formance of

of the OS and

dline (set TB)

thm

has been fou

t to directly c

wever, in th

g other type

ntly the best

65

with 10 and

er solutions.

e OS is not

ves the best

of activities

nt from the

deadline, the

e GEDA is

mpact of the

the GEDA

the project

und for the

compare the

he existing

s of PRLP.

performing

Hongbo Li, Ziyi Hu, Hanyu Zhu, Yinbin Liu

66

meta-heuristic algorithm. There are some differences between our PRLP and the

problem of Doulabi et al. (2011), such as they consider preemption costs, allow

only a part of activities to be interrupted, and the activities require different

amounts of resources at different times. Therefore, our GEDA can only be

indirectly compared with the HGA in this paper. The results are shown in Table 4.

Table 4. Comparison results between our GEDA and the HGA of Doulabi et al. 2011 |ܰ| GEDA HGA
ARD CPU (2.5GHz) ARD CPU (3.0GHz)

10 4% 0.122 0% 18
20 2% 0.305 6% 41
30 1% 0.551 4% 118

Since the results in Table 4 are indirect comparison results, some explanations

need to be made before explaining these results: (1) The instances solved by the

GEDA are those with known optimal solutions in TA. The data set used by the HGA

is generated by PROGEN/MAX (Schwindt 1995). The project deadlines in both

data sets are the same and both of them equal 1.0 ∙ ௡ାଵ. (2) The number ofܵܧ

schedules produced by the GEDA is 1000 while that for the HGA is 2500. (3) As

mentioned earlier, there are some differences between the problems solved by the

GEDA and the HGA.

Although there are some differences in the experimental environments of the

GEDA and the HGA, both algorithms are evaluated in terms of the average

deviations from the optimal objective function value (i.e., the ARDs). Therefore,

according to the ARDs, the GEDA and the HGA can still be compared to a certain

extent.

We observe from Table 4 that when the number of activities exceeds 10, the

computational results of the GEDA are better than the HGA; in other words, the

solutions obtained by the GEDA is closer to the optimal ones. A possible

explanation would be that the encoding method used in the HGA has a probability

of producing infeasible solutions during the iteration process, which may reduce

the optimization efficiency of the HGA. While in the GEDA, our encoding method

can ensure that the solutions generated in each iteration are always feasible. In

addition, the CPU frequency used by the GEDA is lower than the HGA, but the

running time of the GEDA is far less than the HGA. In summary, the results in

Table 4 indirectly indicate our GEDA outperforms the HGA in terms of the

solution effectiveness and efficiency.

5 Conclusions and future research
We have proposed an effective and efficient meta-heuristic algorithm, GEDA,

Preemptive Resource Leveling in Projects

67

for the PRLP. In the PRLP, each activity is allowed to be interrupted at any integer

time point. Prior to this paper, there has been no meta-heuristics for this type of

resource balancing problems. In the proposed GEDA, a schedule is encoded as an

individual consisting of an activity list and a shift key vector. Our encoding and

decoding methods ensure that the generated schedule is always feasible.

Considering the characteristics of the RPLP, several specially designed operators

are also integrated into the GEDA, e.g., the probability models, the

probability-generating mechanism, the probability updating mechanism, the

crossover and mutation operators.

Based on a large number of benchmark instances, the performance of the

GEDA is analyzed through extensive computational experiments. The experimental

results show that the GEDA is able to find satisfactory solutions within a

reasonable time. For the instances with known optimal solutions, the gap between

the solutions obtained by the GEDA and the optimal solution is within 5% in most

cases. For the remaining instances, the solutions obtained by the GEDA are better

than or close to CPLEX, while the calculation time of the GEDA is only about

1/1000 of CPLEX. In addition, the comparative experimental results reveal that the

proposed GEDA outperforms the existing meta-heuristic algorithm.

It will be an important research direction to design more effective

meta-heuristics for the PRLP. Considering uncertainties in the PRLP will also be an

interesting topic.

ACKNOWLEDGEMENTS
This work was supported by the National Natural Science Foundation of

China (Grant Number 71602106) and the Key Soft Science Project of Shanghai

Science and Technology Innovation Action Plan (Grant Number 20692192400).

REFERENCES

[1] Alsayegh, H. & Hariga, M. (2012), Hybrid Meta-heuristic Methods for the
Multi-resource Leveling Problem with Activity Splitting. Automation in
Construction, 27(1), 89-98;

[2] Ballestín, F., Valls, V. & Quintanilla, S. (2008), Pre-Emption in
Resource-constrained Project Scheduling. European Journal of Operational
Research, 189(3), 1136-1152;

[3] Ballestín, F. Valls, V. & Quintanilla, S. (2009), Scheduling Projects with Limited
Number of Preemptions. Computers & Operations Research, 36(11), 2913-2925;

[4] Bock, D. B. & Patterson, J. H. (1990), A Comparison of Due Date Setting,
Resource Assignment, and Job Preemption Heuristics for the Multiproject
Scheduling Problem. Decision Sciences, 21(2), 387-402;

Hongbo Li, Ziyi Hu, Hanyu Zhu, Yinbin Liu

68

[5] Demeulemeester, E. L. & Herroelen, W. S. (1996), An Efficient Optimal
Solution Procedure for the Preemptive Resource-constrained Project
Scheduling Problem. European Journal of Operational Research, 90(2), 334-348;

[6] Doulabi, S., Seifi, A. & Shariat, S. Y. (2011), Efficient Hybrid Genetic Algorithm
for Resource Leveling via Activity Splitting. Journal of Construction Engineering
and Management, 137(2), 137-146;

[7] Forghani, K. & Fatemi-Ghomi, S. T. (2019), Cellular Manufacturing
Scheduling in the Presence of Multiple Process Routings and Considering Job
Splitting. Economic Computation and Economic Cybernetics Studies and
Research, 53(2), 271-288; ASE Publishing;

[8] Hariga, M. & El-Sayegh, S. M. (2011), Cost Optimization Model for the
Multi-resource Leveling Problem with Allowed Activity Splitting. Journal of
Construction Engineering and Management, 137(1), 56-64;

[9] Li, H. & Dong, X. (2018), Multi-mode Resource Leveling in Projects with
Mode-dependent Generalized Precedence Relations. Expert Systems with
Applications, 97, 193-204;

[10] Li, H., Xiong, L., Liu, Y., & Li, H. (2018), An Effective Genetic Algorithm for
the Resource Leveling Problem with Generalised Precedence Relations.
International Journal of Production Research, 56(5), 2054-2075;

[11] Liu, Y., Hu, Z., Li, H. & Zhu, H. (2019), Does Preemption Lead to More
Leveled Resource Usage in Projects? A Computational Study Based on
Mixed-Integer Linear Programming. Economic Computation and Economic
Cybernetics Studies and Research, 53(4), 243-258; ASE Publishing;

[12] Nadjafi, B., Khalaj, Z. & Mehdizadeh, E. (2013), A Branch and Bound
Approach to Solve the Preemptive Resource Leveling Problem. International
Journal of Manufacturing Engineering, (1), 24-26;

[13] Neumann K., Schwindt C. & Zimmermann J. (2003), Project Scheduling with
Time Windows and Scarce Resources: Temporal and Resource-constrained
Project Scheduling with Regular and Nonregular Objective Functions.
Springer;

[14] Nudtasomboon, N. & Randhawa, S. U. (1997), Resource-constrained Project
Scheduling with Renewable and Non-renewable Resources and Time-resource
Tradeoffs. Computers & Industrial Engineering, 32(1), 227-242;

[15] Razavi, N. & Mozayani, N. (2007), A Resource Leveling Model Based On
Genetic Algorithms: Activity Splitting Allowed. Proceedings of the International
MultiConference of Engineers and Computer Scientists 2007, IMECS 2007,
March 21-23, 2007, Hong Kong, China. DBLP;

[16] Rieck, J. & Gather, T. (2012), Mixed-integer Linear Programming for Resource
Leveling Problems. European Journal of Operational Research, 221(1), 27-37;

[17] Schwindt, C. (1995), ProGen/max: A New Problem Generator for Different
Resource-constrained Project Scheduling Problems with Minimal and Maximal
Time Lags. Institute for Economic Theory and Operations Research 449,
Universitat Karlsruhe, Karlsruhe, Germany;

[18] Son, J. & Mattila, K. G. (2004), Binary Resource Leveling Model: Activity
Splitting Allowed. Journal of Construction Engineering and Management, 130(6),
887-894.

