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PREEMPTIVE RESOURCE LEVELING IN PROJECTS 
 

Abstract: As a well-known NP-hard problem in project scheduling, the resource 

leveling problem (RLP) has attracted many researchers’ attentions. In the RLP, a 

typical assumption is that activities are non-preemptive during project execution, 

which means that activities cannot be interrupted once they have been started. 

However, preemption is not uncommon in project management practice and 

existing studies already show that it is beneficial to consider preemption when 

leveling resource usage. Therefore, we investigate the preemptive resource leveling 

problem and design a genetic estimation of distribution algorithm (GEDA). To 

analyze the performance of the GEDA, we conduct extensively computational 

experiments on 2160 randomly generated instances. We also examine the impacts 

of various factors on the GEDA. Comparative experimental results show that the 

GEDA outperforms the existing meta-heuristic algorithm. 

Keywords: Project scheduling; Resource leveling; Preemption; Meta-heuristic 

algorithms. 

 

JEL Classification: M11, C44, C61 

1 Introduction 
It is increasingly popular to manage work in the form of projects. 20% of the 

global economic activities are organized by projects, which generate an annual 

economic value of approximately 12 trillion dollars (Li & Hall 2019). In project 
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management, allocating various types of resources effectively is a critical success 

factor for projects. As a well-known NP-hard problem in project resource 

scheduling, the resource leveling problem (RLP) has attracted many researchers’ 

attentions. In the RLP, a baseline schedule is formed by specifying start time for each 

activity. This schedule levels the resource utilization while satisfying the precedence 

relations constraints and the project deadline constraint. Leveled resource usage can 

reduce unnecessary capital expenditures and avoid hasty deployment of temporary 

resources (Doulabi et al. 2011; Li et al. 2018). The systematic reviews of the RLP 

can be further referred to Demeulemeester & Herroelen (2002), Neumann et al. 

(2003). 

In the RLP literature, a typical assumption is that activities are non-preemptive 

during project execution, which means that activities cannot be interrupted once they 

have been started. However, preemption is not uncommon in project management 

practice. Due to management needs or external conditions, the execution of certain 

activities may be temporarily interrupted, e.g., stopping machines after work, 

software developers switching between different tasks, etc. (Ballestín et al. 2009). 

Preemption has been considered in many project scheduling problems, such as 

multi-project scheduling (Bock & Patterson 1990), multi-objective project 

scheduling (Nudtasomboon & Randhawa 1997), resource-constrained project 

scheduling (Ballestín et al. 2008; Demeulemeester & Herroelen 1996), etc. 

In the RLP, taking preemption into consideration can lead to more levelled 

resource utilization (Doulabi et al. 2011; Liu et al. 2019). Therefore, more 

attentions are being paid to the preemptive resource leveling problem (PRLP) and 

several exact and meta-heuristic algorithms have been proposed. In terms of exact 

algorithms, Son & Mattila (2004) develop a linear programming model based on 

binary variables for the PRLP. Hariga & El-Sayegh (2011) study a mixed integer 

programming model to minimize the cost caused by resource fluctuations and 

activity preemption. Nadjafi et al. (2013) proposes a branch-and-bound procedure 

to solve the PRLP.  

The research on the meta-heuristic algorithms for the PRLP is scarce. Razavi 

& Mozayani (2007) propose a genetic algorithm and they only allow noncritical 

activities to be interrupted. Alsayegh & Hariga (2012) design a hybrid 

meta-heuristic for PRLP, in which the cost of splitting activities is taken into 

consideration. Splitting critical activities is not allowed neither. Doulabi et al. 

(2011) design a genetic algorithm for the PRLP, in which not all activities are 
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allowed to be preempted. Their objective function consists of two terms: 

minimizing the cost caused by resource utilization variations and that by activity 

preemption. In their genetic algorithm, the proposed encoding scheme tends to 

generate individuals violating the precedence relations constraints. So the authors 

add a feasibility repair mechanism to the genetic algorithm. They validate the 

genetic algorithm using 220 randomly generated instances and the data of a tunnel 

construction project. Different from the above-mentioned studies, we allow any 

activity to be interrupted at any integer time point. In this case, although the 

searching space will be enlarged, it increases the possibility of finding a better 

schedule that results in more leveled resource utilization.  

Due to the RLP is NP-hard (Neumann et al. 2003), exact algorithms are only 

suitable for small instances. They can even hardly obtain feasible solutions for 

large-scale instances in a reasonable time. In this situation, heuristic algorithms 

become the only option. In addition, the introduction of preemption further 

increases the complexity of the RLP, which makes the RLP more difficult to be 

solved. Specifically, at the end of each unit time period, decisions about which 

activities should be scheduled need to be made, which significantly increases the 

number of feasible solutions. While in the non-preemptive RLP, the timing for 

scheduling decisions only corresponds to the completion of activities. Therefore, 

efficient meta-heuristic algorithms need to be devised to handle the PRLP. 

In this paper, we investigate the PRLP and develop a genetic estimation of 

distribution algorithm (GEDA) that combines the genetic algorithm (GA) and the 

estimation of distribution algorithm (EDA). Our main contributions are as follows: 

(1) For the first time, a meta-heuristic, GEDA, is proposed for solving the 

PRLP, in which each activity is allowed to be interrupted at any integer time point. 

On the one hand, to the best of our knowledge, there has been no research on 

meta-heuristics for this kind of PRLP. On the other hand, GAs and EDAs have 

been successfully applied to various project scheduling problems (Li et al. 2018; Li 

& Dong, 2018; Forghani & Fatemi-Ghomi, 2019). However, no studies that apply 

the EDA to solve the PRLP are found. 

(2) In the GEDA, a schedule is encoded into an individual consisting of an 

activity list and a shift key vector. This encoding mechanism ensures that an 

individual always corresponds to a feasible schedule. The activity list and the shift 

key vector are updated by specially designed operators based on the EAD and the 

GA, respectively.  
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(3) To analyze the effectiveness and efficiency of the GEDA, we conduct 

extensively computational experiments on 2160 randomly generated instances. The 

results show that, for small-scale instances with no more than 30 activities whose 

optimal solutions are known, in most cases, the difference between the solutions 

obtained by the GEDA and the optimal solutions is within 5%, and the average 

calculation time of each instance is less than 0.6 seconds. For small-scale instances 

whose optimal solutions are not known and large-scale instances with 100 

activities, the GEDA obtains better solutions than CPLEX on more than half of the 

instances, while requiring only about 1/1000 of the calculation time of CPLEX. 

The rest of the paper is organized as follows. Section 2 states the PRLP, 

presents the corresponding optimization model, and gives an example for the PRLP. 

Our GEDA is described in Section 3. We perform computational experiments to 

analyze the performance of the GEDA in Section 4. The last section summarizes 

the paper and prospects future research directions. 

2. The preemptive resource leveling problem 
2.1 Problem statement 

The PRLP is described as follows. A project is represented by an 

activity-on-node network ܩ = (ܰ, ܰ ,N is the set of nodes representing activities .(ܣ = {0,1,2… , ݊, ݊ + 1} . The activities are topologically numbered from 0 to ݊ + 1. Activities 0 and ݊ + 1 are dummy ones, indicating the start and the end of 

the project. ܣ  is the set of arcs indicating the precedence relations among 

activities. If (݅, ݆) ∈  activity ݅ is the predecessor of activity ݆, which means ,ܣ

that activity ݆  cannot be started until activity ݅  is finished. This kind of 

precedence relations is the same as that used in the critical path method 

(Demeulemeester & Herroelen 2002). The project deadline is ݀̅. 

The start time and duration of non-dummy activity ݅ are denoted as ݏ௜ and ݀௜, respectively. The duration of dummy activities is 0. Without loss of generality, 

we assume that all time-related parameters are integer. There are ܭ types of 

renewable resources. During the execution of non-dummy activity ݅ , its 

requirement for resource type ݇  at each time period is ݎ௜௞ , ݇ = 1,2, … , ܭ . 

Dummy activities do not need any resources. 

In project management practice, it is not uncommon to interrupt some 

activities such that resources can be re-allocated to other more critical activities. 

The interrupted activity is resumed after the resources become sufficient again. 

Therefore, without loss of generality, we assume that each activity is allowed to be 
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interrupted at any integer time point during execution. For activity ݅, let ݌௜ denote 

its number of preemption, ݌௜ ∈ [0, ௜ܲ], where ௜ܲ  is its maximum number of 

preemption ( ௜ܲ = ݀௜ − 1 ). If ݌ = 0 , then activity ݅  is executed without 

preemption; If ݌ = ௜ܲ, then activity ݅ is interrupted after each time unit. 

If activity ݅ is interrupted ݌௜ times, then activity ݅ can be viewed as ݌௜ + 1 
sub-activities and these sub-activities form a set ܫ௜ = {݅ଵ, ݅ଶ, … , ݅௣೔ାଵ}. For each 

sub-activity ݅௤ ∈ ݍ) ௜ܫ = 1,2, … , ௜݌ + 1), its start time and duration are denoted as ݏ௜௤ and ݀௜௤, respectively.  

The PRLP aims at minimizing the variations in resource utilization by 

constructing a baseline schedule ܵ that decides the start time and duration of each 

sub-activity under a preemption environment, while meeting the precedence 

relation constraints and the project deadline constraint. 

2.2 Optimization model 
Treating each activity ݅ as ݀௜ successive sub-activities, each of which has a 

duration of 1, we present the optimization model for the PRLP as follows: 

Minimize ∑ ∑ (ܿ௞ ∙ ௞௧ଶݑ )ௗത௧ୀଵ௄௞ୀଵ    (1) 

Subject to: ݏ଴,ଵ = 0  (2) 

௡ାଵ,ଵݏ  ≤ ݀̅  (3) 

௜,ௗ೔ݏ  + 1 ≤ ,݅)∀ ௝,ଵݏ ݆) ∈  (4) ܣ

௜,௤ݏ  + 1 ≤ ݅∀ ௜,௤ାଵݏ ∈ ܰ; ݍ = 1,2, … , ݀௜ − 1 (5) 

 ∑ ௜௞௜∈௏೟ݎ = ݇  ௞௧ݑ = 1,2,… , ;ܭ ݐ = 1,2, … , ݀̅; (6) 

௜,௤ݏ  ≥ 0 ∀݅ ∈ ܰ; ݍ = 1,2, … , ݀௜ (7) 

The objective function (1) minimizes the weighted sum of the square of 

resource usage (Demeulemeester & Herroelen 2002), where ݑ௞௧ is the usage of 

resource type ݇ at each time period ݐ and ܿ௞ is the weight of resource type k. The 

constraint (2) ensures that the project begins at time zero. The constraint (3) 

promises that the project is completed no later than the deadline. The constraints (4) 

represent the precedence relations, which means that the successor activities cannot 

be started until the last sub-activities of its predecessor have been finished. The 

constraints (5) indicate that the sub-activities of each activity should be executed 

sequentially. The constraints (6) are used to calculate ݑ௞௧, in which ௧ܸ is the set of 

sub-activities that are executing during time period ݐ. The constraints (7) let the start 

time of each sub-activity be non-negative. 

Obviously, the object function (1) is non-linear due to the existence of ݑ௞௧ଶ . In 

addition, the set ௧ܸ in constraints (6) also make the constraints non-linear. Therefore, 
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the above model is non-linear. However, based on the linearization method proposed 

in Rieck et al. (2012) and Liu et al. (2019), this non-linear model can be 

transformed into a linear integer programming model.  

The PRLP can be reduced to the RLP by allowing each activity to be 

interrupted zero times. This means that the PRLP is a generalization of the NP-hard 

RLP (Neumann et al., 2003). Therefore, the PRLP is also NP-hard. In this case, 

exact algorithms can hardly find a satisfactory solution in a reasonable time for the 

large-scale PRLPs. We will design a meta-heuristic algorithm in Section 3 to 

efficiently obtain satisfactory solutions for the PRLP. 

2.3 Example 
We use an example to illustrate the PRLP and show that it is possible to obtain a 

more leveled schedule after considering preemption. Figure 1 displays a project network 

with 4 non-dummy activities. The rectangles and the arrows represent activities and 

precedence relations, respectively. There is one resource type. The number above (below) 

each rectangle is the duration (resource requirement) of the corresponding activity. The 

project deadline is 4. The weight of the resource ܿଵ = 1. 
 di
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2 3 4

5
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0   

0   

2 1 2

0
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 ri   
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Figure 1. Example project network 

When the preemption is not allowed, Figure 2 shows the resulting optimal 

schedule ܵ = (0,0,0,2,3,4)  with the value of the objective function being ∑ ∑ ൫ܿ௞ ∙ ௞௧ଶݑ ൯ସ௧ୀଵଵ௞ୀଵ = 3ଶ + 3ଶ + 4ଶ + 2ଶ = 38.  

If we allow the preemption, we can obtain the optimal schedule ܵᇱ =[0, (0,3),0,2,3,4] as shown in Figure 3. In ܵᇱ, activity 1 is interrupted once. The 

first sub-activity (1a) of activity 1 starts at time 0 with a duration of 2 and the 

second one (1b) starts at time 3 with a duration of 1. The corresponding objective 

value of ܵᇱ  is ∑ ∑ ൫ܿ௞ ∙ ௞௧ଶݑ ൯ସ௧ୀଵଵ௞ୀଵ = 3ଶ + 3ଶ + 3ଶ + 3ଶ = 36. It can be seen 

that a more leveled schedule is constructed after allowing the preemption. 
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Figure 2. The optimal schedule without 

preemption 
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Figure 3. The optimal schedule with preemption 

3. Genetic estimation of distribution algorithm 

The EDA is a prospering meta-heuristic for solving optimization problems. 

There are some similarities between the EDA and the GA, e.g., they are 

population-based algorithms and the population is updated at each iteration. The 

EDA is based on statistical learning theory. The core of the EDA is probability 

models that describe the distribution of potential solutions in the searching space. 

The EDA updates its populations by sampling according to the probability models. 

In our GEDA, there are POP individuals in the population. Each individual 

consists of two elements: an activity list ܮܣ and a shift key vector ܵܭ (Section 3.2). 

New individuals are generated by applying the EDA and the GA operators to the 

activity list and the shift key vector, respectively (Sections 3.3 and 3.4).  

 Initialize the probability model PM 

Sampling from the PM to generate 
activity lists based on the PGM

Update PM

Decoding the individuals into 
schedules

Choose the best POP‘ individuals

Apply crossover and mutation 
operators to SK

Is the stop condition met?

Start

Yes

No

End

 Initialize the shift key vector SK

 
Figure 4. The framework of the GEDA 

The framework of the GEDA is described as follows (Figure 4). First, the 

probability model ܲܯ and the shift key vector ܵܭ are initialized. ܲܯ is used to 
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generate activity lists. Then, based on the probability generating mechanism, POP 

activity lists are obtained by sampling the probability model ܲܯ . Next, the 

individuals are decoded into schedules (Section 3.2) and the corresponding 

objective function values are calculated. After that, ܲܯ is updated based on the 

top POP’ individuals in terms of the objective function value. In the meanwhile, 

crossover and mutation operators are adopted to update the shift key vectors. The 

above process keeps iterating and the schedules are improved until a pre-determined 

termination condition is satisfied.  

3.1 Unit time project network 
To simplify the schedule encoding mechanism, we introduce the unit time 

project network.  
Definition: Unit time project network ܩ′ = (ܰᇱ, ݅ ᇱ). For each activityܣ ∈ ܰ, 

splitting it into ݀௜  sub-activities, each of which has a duration of 1. Let ܰᇱ 
denote the set of the resulting sub-activities. For any two adjacent sub-activities, 
adding a precedence relation between them. The newly added and original 
precedence relations form the set ܣᇱ. In this way, ܰᇱ and ܣᇱ form the unit time 
project network ܩ′. 

The set ܰᇱ  contains ܾ݊ݑݏ = ∑ ݀௜௡௜ୀଵ  non-dummy sub-activities. We 
re-number these sub-activities according to the following rule: For sub-activity ݅௤ 

ݍ) = 1,2, … , ݀௜), its number in ܰᇱ is ݉ = ∑ ௝݀௜ିଵ௝ୀଵ +  The dummy end activity .ݍ
in ܰᇱ  is numbered ܾ݊ݑݏ + 1. Figure 5 illustrate this rule using the example 
project shown in Figure 1. 

1Activity number in  N:

Sub-activity number in  N':

42 3

1 72 3 4 5 6

 

Figure 5. Numbering the sub-activities 

After introducing the unit time project network, we do not need to specifically 

consider the interruption in the PRLP. Because for any two adjacent sub-activities ݅௤ଵ and ݅௤ଶ belonging to the same activity, if the finish time of ݅௤ଵ equals the 

start time of ݅௤ଶ, then it means that there is no interruption between ݅௤ଵ and ݅௤ଶ; 

otherwise, there exists interruption. In the following, our GEDA acts on the unit 

time project network ܩ′ to obtain the schedule for the RPLP. 

3.2 Encoding and decoding 
Properly encoding and effectively evaluating a schedule is the key to design 

effective meta-heuristic algorithms for solving the PRLP. In project scheduling 
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research, the meta-heuristic algorithms usually operate on some kind of encoding of 

the schedule. The schedule generation mechanism is used to decode the encoded 

schedule. 

In the GEDA, an individual corresponds to a schedule. The individual is 

represented by a tuple (ܮܣ, ܭܵ and the shift key vector ܮܣ of the activity list (ܭܵ . The activity list ܮܣ = ,ଵߨ) ,ଶߨ … , ,௜ߨ … , (௦௨௕௡ߨ  is a permutation of the 

sub-activities, where ߨ௜ is the sub-activity number that appears on the ith position. 

The number of elements in ܮܣ equals that of sub-activities ܾ݊ݑݏ. It should be 

noted that the order of the sub-activities in ܮܣ  does not need to obey the 

precedence relations constraints, because we will deal with these constraints in the 

decoding procedure. There are also ܾ݊ݑݏ  elements in the shift key vector ܵܭ = ,ଵ݇ݏ) … ,௜݇ݏ … , ௜݇ݏ ,(௦௨௕௡݇ݏ ∈  ௜ indicates the degree to which the݇ݏ .[0,1]

start time of sub-activity ݅ deviates from its earliest start time. In other words, the 

earliest and latest start times of sub-activity ݅ form a time window, and ݇ݏ௜ is the 

ratio of the difference between the start time of the sub-activity ݅ and its earliest 

start time to the time window. In the initial population, ܮܣ is sampled from the 

initial probability model (Section 3.3.1), and ܵܭ is generated randomly.  

In the GEDA, the resource levelling schedule generation scheme (RLSGS) (Li 

et al. 2018; Li & Dong 2018) is used to decode individuals into schedules. The 

main process of the RLSGS is as follows. For an individual (ܮܣ,  the first ,(ܭܵ

unscheduled sub-activity ݅ indicated by ܮܣ is selected and its start time is set as ݏ௜ = ௜ݏ݁ + ௜݇ݏہ × ௜ݏ݈) −  is the earliest (latest) start time of（௜ݏ݈）௜ݏ݁ where ,ۂ(௜ݏ݁

sub-activity ݅ after considering the scheduled activities. Then the earliest and 

latest start times of unscheduled sub-activities are updated. It can be seen that the 

start time assigned to each sub-activity in the above manner is always within a 

feasible time window, so that the precedence relationships between the 

sub-activities are satisfied. The above process is repeated until all sub-activities 

have been assigned a start time. In this way, the schedule is obtained. Given a 

schedule, we calculate its objective function value according to Equation (1), 

which is then used to evaluate each individual. 

3.3 Operators on the activity list 
In each iteration of the GEDA, the activity list ܮܣ is the updated using the 

probability models. 

3.3.1 Probability-generating mechanism 
In the probability-generating mechanism (PGM), the probability model 
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ܯܲ = ,ଵߙ) ,ଶߙ … , ,௜ߙ … ,  ௜ that sub-activity ݅ isߙ ௦௨௕௡) predicts the probabilityߙ

chosen when constructing the sub-activity list ܮܣ. The basic idea of the PGM is as 

follows. The numbers in the interval 	(0, ∑ ௜௦௨௕௡௜ୀଵߙ )  correspond to different 
sub-activities. The sub-activity list can be obtained by sampling from this interval 

according to the probability (ߙଵ, ,ଶߙ … , ,௜ߙ … ,  .ܯܲ ௦௨௕௡) of each sub-activity inߙ

Details on the PGM is shown in Algorithm 1.  

Algorithm 1. Using the PGS to generate the sub-activity list 
Input: the probability model ܲܯ 
Output: the sub-activity list ܮܣ ܮܣ = ∅; ܷ = ∑ ௜௦௨௕௡௜ୀଵߙ ; 
For ݏ݋݌ = 1 to ߨ ܾ݊ݑݏ = ݎܲ ;1 =  ;గߙ

Sample a random number ݎ from the interval (0, ܷ) 
While ݎ > ߨ :ݎܲ = ߨ + ݎܲ ,1 = ݎܲ + ௣௢௦ߨ ;గߙ = ܷ ;ߨ = ܷ − గߙ ;గߙ = 0; 

End for 
Return ܮܣ = ,ଵߨ) ,ଶߨ … ,  (௦௨௕௡ߨ

In Algorithm 1, the initial sub-activity list ܮܣ  is set to empty. The 

sub-activity number π needs to be inserted into ܮܣ , and the order that the 
sub-activities are selected is determined by the probability model ܲܯ  ௣௢௦ߨ .
represents the sub-activity number in ܮܣ and ݏ݋݌ is the ݏ݋݌-th position in ܮܣ 

ݏ݋݌) = 1,2, … ,  the corresponding ,ܮܣ Whenever a sub-activity is put into .(ܾ݊ݑݏ

element in ܲܯ  is set to 0 (i.e. ߙ௜ = 0). In doing so, we ensure that each 

sub-activity is only selected once, which means that after a sub-activity is selected, 

it will not be selected again. Given a set ܰᇱതതത of sub-activities that have not been 

added to the sub-activity list ܮܣ, the probability that the sub-activity ݅ ∈ ܰᇱതതത	is 
selected into ܮܣ is ߙ௜/∑ ௝௝∈ேᇲതതതതߙ . 

At the beginning of the GEDA, we initiate ܲܯ = ,ܾ݊ݑݏ/1) …,ܾ݊ݑݏ/1  such that each sub-activity is chosen with an equal probability. This means (ܾ݊ݑݏ/1,

that we sample uniformly from the solution space to form the initial sub-activity 

list. In this way, the diversity of the initial solutions in the solution space is 

guaranteed. 

3.3.2 Probability model updating mechanism 
At the end of each iteration, the probability model ܲܯ needs to be updated 

such that ܲܯ can better estimate the distribution of the solutions. Specifically, 
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POP′ best individuals are selected from the POP individuals generated using the 

PGM in terms of the objective function value. Then the elements in ܲܯ are 

updated based on the following formula:  ߙ௜ᇱ = (1 − (ߚ ∙ ௜ߙ + ఉ௉ை௉ᇲ ∑ ߱௜௝௉ை௉ᇲ௝ୀଵ , 1 ≤ ݅ ≤  (8)    ܾ݊ݑݏ

where ߙ௜ᇱ is the updated value of ߙ௜ , and ߚ is the learning speed. ௜߱௝ reflects the 
importance of sub-activity i appearing in different positions of the sub-activity list. 
When constructing a sub-activity list using the PGM, it is implied that the more 
front the activity in the sub-activity list, the more important it is. Therefore, to 

calculate ߱௜௝, we let the sub-activity that appears first in the sub-activity list has 
the largest weight ܾ݊ݑݏ, the weight of the subsequent sub-activity decreases by 1, 
and so on. So the weight of the last sub-activity in the sub-activity list is 1. 

Consequently, ௜߱௝ = ௦௨௕௡ି௣௢௦ାଵ௦௨௕௡ା(௦௨௕௡ିଵ)ା⋯ାଵ = ௦௨௕௡ି௣௢௦ାଵ(௦௨௕௡ାଵ)௦௨௕௡/ଶ , where ݏ݋݌  is the 

position of sub-activity ݅ in ܮܣ.  
3.4 Operators on the shift key vector 

The crossover and mutation operators from the GA are applied to the shift key 

vector to update it. 

3.4.1 Crossover 
Two-point crossover is adopted in the GEDA. First, ܱܲܲ/2 individuals are 

chosen as father individuals with probability ௖ܲ; and top ܱܲܲ/2 individuals in 

terms of the objective function value are selected as mother individuals. Then, the 

father and mother individuals are randomly matched into ܱܲܲ/2  pairs of 

individuals. Next, two crossover points ݐଵ  and ݐଶ	 (1 ≤ ଵݐ < ଶݐ ≤ ܾ݊ݑݏ ) are 

selected randomly. The father’s (mother’s) gene between ݐଵ and ݐଶ are copied to 

son (daughter) individual. The remaining gene positions in the son (daughter) 

individual are filled with the genes on the corresponding positions of the mother 

(father) individual. 

3.4.2 Mutation 
The mutation operator used in the GEDA is one-point mutation. For each 

child individual, each element in the shift key vector has a mutation probability of ௠ܲ. Specifically, for each element ݇ݏ௜ (݅ = 1,… ,  in the shift key vector, we (ܾ݊ݑݏ

generate a random number ݀݊ܽݎ ∈ (0,1). If ݀݊ܽݎ is smaller than the mutation 

probability ௠ܲ, then we replace ݇ݏ௜ with a new random number between 0 and 1. 

4. Computational experiments 
Our GEDA is implemented in Matlab R2014a. Our computational 

experiments are performed on a computer equipped with an Intel Core i5 2.5 GHz 
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CPU and Windows 10. 

4.1 Experimental setup 
Our computational experiments adopt two benchmark data sets: TA and TB. TA 

is from Liu et al. (2019). Both sets are generated using the project scheduling 

problem instance generator RanGen (Demeulemeester et al. 2003). Specifying 

various control parameters in RanGen, project networks with different number of 

activities, topological structures and resource types can be produced. The main 

parameters of the data sets TA and TB are shown in Table 1. The order strength (OS) 

is the ratio of the number of precedence relations in the project network to the 

theoretical maximum number of precedence relations. The OS represents the 

complexity of the project network structure. ܵܧ௡ାଵ	is the critical path length 

computed by the critical path method. 

Table 1. The main parameters of data sets TA and TB 
Parameter Dataset TA Dataset TB|ܰ|  10, 20, 30 100
OS 0.3, 0.5, 0.7 0.3, 0.5, 0.7 

K 4 4 ݀̅  1.0 ∙ ௡ାଵ; 1.2ܵܧ ∙ ௡ାଵ 1.0ܵܧ ∙ ௡ାଵ; 1.2ܵܧ ∙  ௡ାଵܵܧ

Given the parameter values of TA in Table 1, 90 instances are generated for 

each value combination and this results in 3 × 3 × 1 × 2 × 90 = 1620 instances 

in TA. In terms of the number of activities contained in each instance, TA is a small 

scale data set. 

The main difference between TA and TB is the number of activities. TB is a 

larger data set with 100 activities in each instance. Given the parameter values of 

TB in Table 1, 90 instances are also generated for each value combination and this 

results in 1 × 3 × 1 × 2 × 90 = 540 instances in TB. 

For the GEDA parameters, after fine-tuning the parameters, we set the 

population size POP = 200 , the number of individuals used to update the 

probability model POPᇱ = 50 , the learning speed β = 0.5 , the crossover 

probability ௖ܲ = 0.8  and the mutation probability ௠ܲ = 0.3 . The termination 

condition of the GEDA is to generate up to 1000 schedules.  

4.2. Performance measures 
To evaluate the performance of our GEDA, we take the mixed-integer linear 

programming algorithm in CPLEX as the baseline algorithm and compare it with 

the GEDA. Specifically, we transform the model (1) - (7) into a mixed-integer 

linear programming model according to Liu et al. (2019). Then the resulting model 
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is solved using CPLEX. For CPLEX, the time limit for each instance is set to 600 

seconds. This means that an optimal solution will be output if it can be found 

within 600 seconds. Otherwise, the best feasible solution is output. 

In our experiments, the following performance measures are employed:  

(1) Average relative deviation (ARD): The average percentage deviations from 

the objective values obtained in CPLEX. The ARD is calculated as follows:  

      ARD = ∑ ቂቀೀ೔ಸಶವಲషೀ೔಴ುಽಶ೉ቁ/ೀ೔಴ುಽಶ೉ቃ೙೔సభ ೙ × 100%      (9) 

where ௜ܱீ ா஽஺ ( ௜ܱ஼௉௅ா௑) is the objective function value of the ith instance obtained 

by the GEDA (CPLEX) and n is the number of instances in the test set. The value 

of the ARD reflects the performance difference between the GEDA and CPLEX. A 

smaller ARD value means that the GEDA can obtain better solutions. 

(2) Computation time (CPU): Average computation times in seconds for 

solving each instance.  

4.3. Computational results 
We examine the performance of the GEDA by comparing it with CPLEX. 

Table 2 shows the computational results on the small-scale test set TA. It should be 

noted that CPLEX only obtains the optimal solutions of 358 instances in TA. The 

remaining instances have only feasible solutions so far (Liu et al., 2019). 

Accordingly, the results in Table 2 are divided into two groups corresponding to the 

columns labeled with “Instances with known optimal solutions” and “Instances 

with feasible solutions only”, respectively. The cells filled with “-” mean that the 

optimal solutions of the corresponding instances have not been found. A negative 

value of the ARD indicates that our GEDA outperforms CPLEX in the 

corresponding condition. 

From Table 2, it can be seen that for instances with known optimal solutions, 

the solutions obtained by the GEDA are close to the optimal ones. For instances 

with feasible solutions, the GEDA obtains better solutions in more than half of the 

cases (at this time, the ARD is negative); in the other cases, the results of the 

GEDA are close to CPLEX (the ARD is less than 2%). In terms of the computation 

time, the average CPU time of the GEDA is less than 0.6 seconds, which is much 

faster than CPLEX. In summary, the results in Table 2 show that for the small-scale 

PRLP instances, the GEDA is able to obtain satisfactory solutions in a short time. 

Because the scale of the data set TB is larger, CPLEX has not found the 

optimal solutions. The ARDs in Table 3 indicate the comparison results between 
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the solutions obtained by the GEDA and the best solutions of CPLEX. We can see 

from Table 3 that the GEDA obtains better solutions when the project deadline is 

loose. For the tight project deadline, the solutions of the GEDA are only slightly 

worse than CPLEX, and the difference between objective values is within 2%. In 

addition, the average CPU time of the GEDA is within 6 seconds, whose efficiency 

is much higher than CPLEX. In short, when solving large-scale instances, the 

effectiveness and efficiency of our GEDA are also satisfactory.  

Table 2. Computational results on the data set TA  ݀̅ |ܰ| ܱܵ 
Instances with known 

optimal solutions
Instances with feasible 

solutions only 
ARD CPU (s) ARD CPU (s) 

1.0 ∙  ௡ାଵܵܧ

10 
0.3 2.39% 0.128 -0.71% 0.132 
0.5 4.47% 0.117 -2.37% 0.123 
0.7 2.93% 0.122 -2.22% 0.123 

20 
0.3 2.08% 0.304 0.41% 0.317 
0.5 3.04% 0.312 -0.29% 0.310 
0.7 1.60% 0.298 -0.29% 0.313 

30 
0.3 0.55% 0.562 0.31% 0.592 
0.5 1.01% 0.550 0.87% 0.590 
0.7 1.01% 0.542 0.89% 0.587 

1.2 ∙  ௡ାଵܵܧ

10 
0.3 3.37% 0.125 0.23% 0.133 
0.5 5.05% 0.119 -1.68% 0.124 
0.7 5.97% 0.122 -1.98% 0.125 

20 
0.3 2.79% 0.303 0.08% 0.315 
0.5 10.54% 0.293 -0.12% 0.312 
0.7 4.63% 0.292 -0.03% 0.320 

30 
0.3 1.64% 0.584 -0.29% 0.597 
0.5 3.81% 0.537 1.05% 0.593 
0.7 - - 1.44% 0.593 

Table 3. Computational results on the data set TB  ݀̅ ܱܵ ARD CPU (s) 1.0 ∙  ௡ାଵܵܧ
0.3 0.64% 5.754
0.5 0.58% 5.711
0.7 1.94% 4.2421.2 ∙  ௡ାଵܵܧ
0.3 -3.11% 5.783
0.5 -8.54% 5.750
0.7 -11.48% 4.237

4.4. Sensitivity analysis 

In this subsection, we examine the impact of the number of activities, the 

project deadline and the OS on the performance of the GEDA (Figures 6-9). In 

Figures 6-9, the lower the line, the better the results.  

Figures 6-8 display the results on the small-scale test set TA. It can be seen 

that there are no obvious patterns for the impact of the number of activities. When 
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meta-heuristic algorithm. There are some differences between our PRLP and the 

problem of Doulabi et al. (2011), such as they consider preemption costs, allow 

only a part of activities to be interrupted, and the activities require different 

amounts of resources at different times. Therefore, our GEDA can only be 

indirectly compared with the HGA in this paper. The results are shown in Table 4. 

Table 4. Comparison results between our GEDA and the HGA of Doulabi et al. 2011 |ܰ|  GEDA HGA
ARD CPU (2.5GHz) ARD CPU (3.0GHz) 

10 4% 0.122 0% 18
20 2% 0.305 6% 41
30 1% 0.551 4% 118

Since the results in Table 4 are indirect comparison results, some explanations 

need to be made before explaining these results: (1) The instances solved by the 

GEDA are those with known optimal solutions in TA. The data set used by the HGA 

is generated by PROGEN/MAX (Schwindt 1995). The project deadlines in both 

data sets are the same and both of them equal 1.0 ∙  ௡ାଵ. (2) The number ofܵܧ

schedules produced by the GEDA is 1000 while that for the HGA is 2500. (3) As 

mentioned earlier, there are some differences between the problems solved by the 

GEDA and the HGA. 

Although there are some differences in the experimental environments of the 

GEDA and the HGA, both algorithms are evaluated in terms of the average 

deviations from the optimal objective function value (i.e., the ARDs). Therefore, 

according to the ARDs, the GEDA and the HGA can still be compared to a certain 

extent.  

We observe from Table 4 that when the number of activities exceeds 10, the 

computational results of the GEDA are better than the HGA; in other words, the 

solutions obtained by the GEDA is closer to the optimal ones. A possible 

explanation would be that the encoding method used in the HGA has a probability 

of producing infeasible solutions during the iteration process, which may reduce 

the optimization efficiency of the HGA. While in the GEDA, our encoding method 

can ensure that the solutions generated in each iteration are always feasible. In 

addition, the CPU frequency used by the GEDA is lower than the HGA, but the 

running time of the GEDA is far less than the HGA. In summary, the results in 

Table 4 indirectly indicate our GEDA outperforms the HGA in terms of the 

solution effectiveness and efficiency.  

5 Conclusions and future research 
We have proposed an effective and efficient meta-heuristic algorithm, GEDA, 
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for the PRLP. In the PRLP, each activity is allowed to be interrupted at any integer 

time point. Prior to this paper, there has been no meta-heuristics for this type of 

resource balancing problems. In the proposed GEDA, a schedule is encoded as an 

individual consisting of an activity list and a shift key vector. Our encoding and 

decoding methods ensure that the generated schedule is always feasible. 

Considering the characteristics of the RPLP, several specially designed operators 

are also integrated into the GEDA, e.g., the probability models, the 

probability-generating mechanism, the probability updating mechanism, the 

crossover and mutation operators. 

Based on a large number of benchmark instances, the performance of the 

GEDA is analyzed through extensive computational experiments. The experimental 

results show that the GEDA is able to find satisfactory solutions within a 

reasonable time. For the instances with known optimal solutions, the gap between 

the solutions obtained by the GEDA and the optimal solution is within 5% in most 

cases. For the remaining instances, the solutions obtained by the GEDA are better 

than or close to CPLEX, while the calculation time of the GEDA is only about 

1/1000 of CPLEX. In addition, the comparative experimental results reveal that the 

proposed GEDA outperforms the existing meta-heuristic algorithm.  

It will be an important research direction to design more effective 

meta-heuristics for the PRLP. Considering uncertainties in the PRLP will also be an 

interesting topic.  
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